Humidity and Moisture Control Modeling for High Performance Building Enclosure Design

Presented to the Building Enclosures Council - Chicago

11.09.2023

FitzGerald

Learning Objectives

- Discover how modeling tools analyze moisture.
- Learn about commissioning procedures on enclosure systems to identify deficiencies in air, moisture and thermal performance.
- Understand air and vapor barrier placement.
- Discuss the value of high performance enclosure systems versus air and moisture risks.

Cyclone Energy Group is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of completion for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA or any material of construction or any method or manner of handling, using, distributing or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation

FitzGerald

The Presenters

Benjamin Skelton President

Charlie Saville Principal + Director of Sustainability

Agenda

History of Code Updates

Enclosures and Codes

Energy Efficiency Moisture Control in Enclosures

History of Code Updates

Enclosures and Codes

Energy Efficiency Moisture Control in Enclosures

What progress we made in the last 50 years?

Estimated Improvement in Commercial Energy Standard

ASHRAE 90.1 Energy Code Improvement

Historical Model Energy Code Improvement | Tableau Public

How do IECC 2021 and ASHRAE 90.1 2019 compare?

While **prescriptive performance** with IECC 2021 and ASHRAE 90.1 2019 is similar, requirements for IECC 2021 have tightened, making ASHRAE more appealing.

On a national weighted average basis, 2021 IECC is **7%** more efficient for site energy use and **3% more for energy costs than ASHRAE Standard 90.1-2019**.

	IECC 2018	IECC 2021	ASHRAE 90.1 2019
Window Wall Ratio	30%	30%	40%
Semi heated space	NA	NA	YES
Automatic Receptacle controls	NO	YES	YES
Energy Monitoring	NO	YES	YES

Prescriptive Performance for IECC 2021 vs. ASHRAE 90.1 2019

How do IECC 2021 and ASHRAE 90.1 2019 compare?

Performance compliance is significantly more challenging with IECC 2021 compared to ASHRAE 90.1 2019.

	IECC 2021	ASHRAE 90.1 2019
Window Wall Ratio	30%	40%
Semi heated space	NA	YES
Automatic Receptacle controls	YES	YES
Energy Monitoring	YES	YES
Performance Compliance	20%	0%

ASHRAE 90.1 2019 Performance Compliance (0% better than baseline) **IECC 2021 Baseline IECC 2021 Performance Compliance (20% better)** The proposed model would comply with ASHRAE 90.1 2019 **IECC 2021** Proposed ASHRAE 90.1 but not with IECC 2021. **Baseline Model Baseline Model**

FitzGerald

Total Building Performance

IECC 2021 Annual energy cost must be less than or equal to 85% of the annual energy cost of a code baseline.

80%

ASHRAE 90.1 2019 Annual energy cost must be 0% better than the annual energy cost of a code baseline.

Introduction of Building Energy Conservation Codes

State Energy Code Adoption

Status of State Energy Code Adoption - Commercial, Energycodes.gov

Progressive Building Performance Standards

State Energy Code Adoption

IECC 2021/ASHRAE 90.1 2019 IECC 2018/ASHRAE 90.1 2016 IECC 2015/ASHRAE 90.1 2013 IECC 2012/ASHRAE 90.1 2010 IECC 2009/ASHRAE 90.1 2007 Title 24 2018 Washington State Energy Code

NYC Energy Conservation Code

2020 Vermont Commercial Building Energy Standards

High Performance Codes in other Jurisdictions

Cyclone Energy Group

History of Code Updates

Enclosures and Codes

Energy Efficiency Moisture Control in Enclosures

How do we assess the impact of IECC 2021?

Necessity

Necessity of the change is based on the ease or difficulty of substituting it.

Performance and Cost Impacts

Performance and cost are evaluated on a low to high scale of impact.

Performance - Environmental Benefit, Maintenance, and Longevity

Cost - First Cost and Operational Cost

FitzGerald

What are the most impactful changes to IECC 2021?

Here is a more in depth look at the most impactful changes in IECC 2021 in reference to the 2018 edition. We'll be going into more detail on the items emphasized in blue.

	C402	Building Envelope	C405	Electrical Power and Lighting Systems
C401.3 Therm		mal Envelope Certificate	C405.2.1	Occupant sensor controls
	C402.1.4	Assembly U-Factor, C-Factor, or	C405.2.4.2	Sidelit davlight zone
	F-Factor		C405.2.7.3	Exterior lighting setback
	C402.5 Air L	C402.5 Air Leakage		Parking Garage Lighting Control
	C402.5.11	Operable Openings Interlocking	C405.3.2	Interior lighting power allowance
			C405.11	Automatic receptacle control
	C403	Mechanical Systems	C405.12	Energy Monitoring
	C403.1.2 C403.2.3	Data Centers Fault Detection and Diagnostics	C406	Additional Efficiency Requirements
	C403.3.2 requirements	HVAC equipment performance	C407	Total Building Performance
	C403.4.2.3 C403.7.1	Automatic start and stop Demand control ventilation	C6	Chicago Amendments
	C403.7.4	Energy recovery systems	C603	Solar Ready Roofs
	C403.8.5	Low-capacity ventilation fans	C604	Electrification Ready Residences
	C403.11 Refr	igeration equipment performance	C605	Exterior Balconies and Parapet
			C606	Gas Lighting Prohibited
	C404	Water Heating	C607	Roof Solar Reflectance
	C404.2.1	Llich Input Convice Mater Leating	C608	Electric Vehicle Supply Equipment
	C404.2.1	High Input Service water Heating	C402.4.1.3	Fenestration Orientation
Cycl	one Energy Gro	pup		Fitz

Thermal Envelope

IECC 2021: A permanent thermal envelope certificate shall be completed by an approved party.

ASHRAE 90.1 2019: Building Envelope is part of the Verification, Testing, and Commissioning requirements (<u>Mandatory</u>). However, a thermal envelope certificate is not required.

Image Credit: Gold Bond Building Products FitzGerald

Assembly Insulation

Commercial Requirements For Chicago (Climate Zone 5A)

IECC 2021 :		R-Value (IECC 2021)	R-Value (IECC 2018)	
	Roof			
	Roof Deck	30ci.	30ci.	
	Metal	19 + 11 LS	19 + 11 LS	
	Attic + other	49	38	
	Wall and the second sec			
\frown	Mass	11.4ci.	11.4ci.	
Performance	Metal	13 + 14ci.	13 + 13ci.	
Impact	Metal Framed	13 + 10ci.	13 + 7.5ci	
Low	Wood framed	13 + 7.5ci OR 20 + 3.8ci.	13 + 3.8 ci OR 20	
	Below Grade	10ci.	7.5ci.	
	Slabs			
\frown	Unheated	20 at perimeter	10 at perimeter	
Cost	Vertical Fenestration			
Impact	Fixed U-Factor	0.36	0.38	
	Operable U-Factor	0.45	0.45	
LOW	SHGC (PF≤0.2)	0.38	SWE 0.38 N 0.51	

Cyclone Energy Group

Almost the same on ASHRAE 90.1 2019.

FitzGerald Image Credit: Tru Team

ESCRIP

How have insulation requirements changed in the last 50 years?

FitzGerald

Operable Openings

IECC 2021 updates

IECC 2021: Operable openings must be interlocked with HVAC setpoints if they are greater than 40 sf.

ASHRAE 90.1 2019: Similar requirements in 6.5.10 Door Switches, but it's prescriptive.

Image Credit: Sustainable Buildings Initiative

Air Leakage

required

IECC 2021:

2021: Air leakage testing is optional for specified building types, building sizes, and climate zones; specific limits for different climate zones

For Chicago, almost all new commercial buildings require air leakage tests. Energy model trade off is not applicable.

ASHRAE 90.1 Either whole building air leakage test (5.4.3.1.1), <u>OR</u> third party design review and
 2019: field inspection during construction(5.9.1.2) is mandatory.

Air Leakage

IECC 2021: Air leakage testing must be completed for applicable buildings. For multifamily residences, individual dwelling units and the whole building must be tested.

- Group R and I: 20% (or 8 units minimum) of residential units must achieve an air tightness of 0.30 cfm/sf @50pa.
- Other than Group R and I: Whole building must achieve an air tightness of 0.40 cfm/sf @50 pa.
 - Whole buildings that exceed 0.40 cfm/sf but don't exceed 0.60 cfm/sf may perform visual diagnostics and non-destructive resolutions with a code official.

Some exceptions apply

FitzGerald

Air Leakage: Blower Door Test

A blower door test measures the air leakage of a building by pressurizing and depressurizing the space to better understand how the building performs.

Cyclone Energy Group

Stack Effect Commissioning

Cyclone Energy Group

FitzGerald Image Credit: The New York Times

Envelope Commissioning

Commercial drone pilots can quickly survey large buildings to identify performance issues

redit: YouTube Image FitzGerald Cyclone Energy Group

Image Credit: Technical Assurance

Sources of heat loss

Ventilation

2021 International Mechanical Code 401.2 Ventilation Required

"Dwelling units complying with the air leakage requirements of the IECC or ASHRAE 90.1 **shall be ventilated by mechanical means**."

*Applicable for jurisdictions that have adopted the 2021 ICC family of codes. This map does not include some major cities.

Code Adoption in Illinois & Chicago

FitzGerald

Stretch Code

A stretch code defines a higher level of energy efficiency or sustainability for new construction than the applicable energy code.

Commercial Stretch Code Targets

Stretch Code Version	Implementation Date	Site Energy Index	Performance Targets (Over 2006 IECC)	Code Created By	
2024	12/31/2023	0.60	≥40% better	Set by CDB by July 31, 2023	-
2026	12/31/2025	0.50	≥50% better	Set by CDB by July 31, 2025	
2029	12/31/2028	0.44	≥56% better	Set by CDB by July 31, 2028	
2032	12/31/2031	0.39	≥61% better	Set by CDB by July 31, 2031	2024
Separate targets for residential stretch code. Current commercial code in Illinois has a Site Energy Index of 0.66 Source: Illinois Climate and Equitable Jobs Act (CEJA) pages 237; 244-248; 630 - Stretch Code				State of Illinois introduces an optic stretch code for	
Performance Targets reference IECC 2006 baseline				non-Chicago jurisdictions	

FitzGerald

an optional

Compliance Paths for Chicago

Fenestration Orientation

Chicago Amendment to IECC 2021: East and West facing glazing must comply with
% of Total Glazing AreaWest Glazing25% maximumEast Glazing25% maximum

unless shaded at 9 a.m. and 3 p.m. on the summer solstice. With IECC, energy modeling tradeoff is not applicable.

A_{W/E}*SHGC_{W/E}≤(A_T*SHGC_c)/5

ASHRAE 90.1 2019:

ASHRAE 90.1 2022:

Cyclone Energy Group

Prescriptive. Modeling trade off applies.

Trade off goes away with envelope backstop

Performance Impact High

> FitzGerald Image Credit: Architizer

Fenestration Orientation

Equal glazing area on all sides of a square building

N²

Cyclone Energy Group

More glazing area on the East side than on the South 75% shading at 9 a.m. and 3 p.m. on the summer solstice (June 21) More glazing area on the East side than on the South More glazing area on the South side than on the East

> FitzGerald Image Credit: Gensler

Roof Solar Reflectance

Chicago Amendments (Already Building Code)

C607 Roof Solar Reflectance

Roof coverings for low sloped roofs must have a reflectance value of 0.72 or greater when installed.

Roof coverings for roof other than low sloped roofs must have a reflectance value of 0.15 or greater when installed.

Solar Reflectance ability to reflect solar energy back to the atmosphere Emissivity ability to dissipate absorbed heat

Solar Ready Roofs

Chicago Amendments

C603 Solar Ready Roofs

'Solar Ready' requires that the building has roof area, structure allowance, electrical capacity and connection, and space reserved for future battery storage, etc. reserved for future PV.

New Construction or additions smaller than 7,500 sf or more than 60 ft tall are exempt.

A permanent Solar-ready certificate must be installed.

FitzGerald

Image Credit: AIA

Exterior Balconies and Parapet

- **Chicago Amendments**
- **C605.1 Continuous Insulation**

Exterior balconies and parapets that interrupt the building thermal envelope must either

- 1. have continuous insulation equivalent to the R-Value of the adjacent wall assembly
- 1. OR incorporate an R-3 minimum thermal break

ANDATOR

Exterior Balconies and Parapet

Cyclone Energy Group

SA1XL-K-SRTC

FitzGerald Image Credit: Alex S. Maclean

ANDATOR

Documentation Requirements

Chicago Amendments

SO2022-2008.pdf (chicago.gov)

Architectural

- Insulation materials and their R-values
- Fenestration U-factors and solar heat gain coefficients (SHGCs)
- Area-weighted U-factor and solar heat gain coefficient (SHGC) calculations
- Air barrier and air sealing details, including the location of the air barrier

Mechanical

- Mechanical system design criteria. Mechanical and service water heating systems and equipment types, sizes, and efficiencies
- Economizer description
- Equipment and system controls
- Fan motor horsepower (hp) and controls
- Duct sealing and duct and pipe insulation locations

Lighting

• Lighting fixture schedule with wattage and control narrative

ANDATOR

FitzGerald

 Location of required daylight zones on floor plans

Energy Modeler

• Energy compliance path

History of Code Updates Enclosures and Codes Energy Efficiency Moisture Control in Enclosures

Heat Transfer

Two Dimensional Thermal Conductivity

Condensate Resistance Factor

Surface Condensation + Interstitial Dewpoint

Whole Building Energy Simulation

FitzGerald

Hygrothermal Analysis (VUFI® Pro

Annual One-Dimensional Heat + Moisture Transport

FitzGerald

Cyclone Energy Group

History of Code Updates

Enclosures and Codes

Energy Efficiency Moisture Control in Enclosures

Case Study: Multifamily High Rise

Cyclone Energy Group

How it should work

• Exterior coating prevents driving rain absorption

Cyclone Energy Group

• Vapor barrier prevents indoor moisture transmission

South Oriented Assembly

How it does work

• Concrete holds higher moisture levels while curing

• Moisture stabilization may take several seasons

Cyclone Energy Group

Concrete needs to dry!

- Concrete holds higher moisture levels while curing
- Moisture stabilization may take several seasons

Cyclone Energy Group

How it could work!

- Vapor diffusion is permitted to the interior/exterior
- Insulation stabilizes at a lower relative humidity

Cyclone Energy Group

South Oriented Assembly

Air tightness matters

- Lower moisture content concrete gets much colder
- Unrestrained interior moisture will condense

Cyclone Energy Group

Careful with Vapor Barriers

Gray Acrylic Coating

Stick-Pin Batt Insulation

Potential Summer + Winter Condensate

- Concrete naturally absorbs + diffuses moisture
- Vapor barrier will trap diffusion and condensate

In conclusion...

History of Code Updates

Enclosures and Codes

Energy Efficiency Moisture Control in Enclosures

Questions?

Thank You!

Benjamin Skelton Charlie Saville

bskelton@cyclone.energy csaville@fitzgeraldassociates.net

