

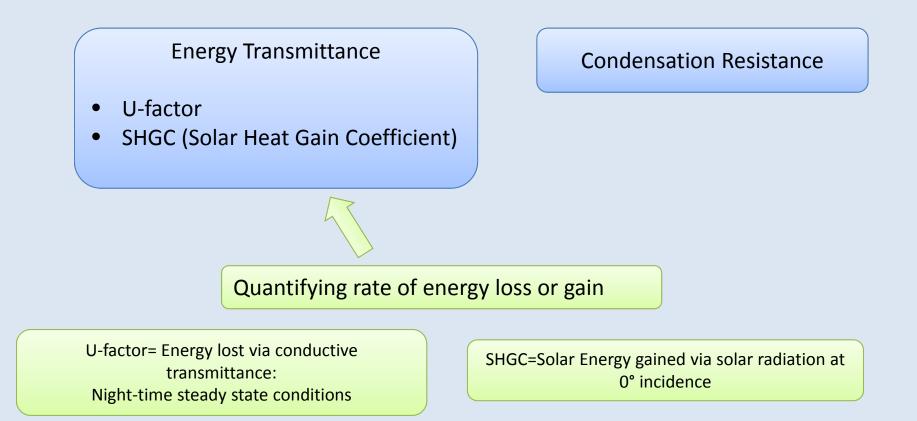
WELCOME

September 11, 2020

Specifying Thermal Analysis Commercial Building Envelope - Fenestration

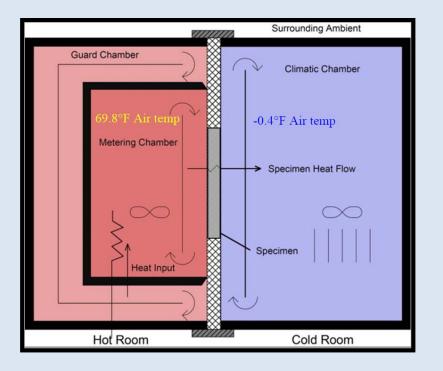
- Presenters
 - Brian Sasman P.E. (President)
 - Jeff Zibton (Project Manager)

Learning Objectives


- Understand standardized vs project specific energy transmittance ratings.
- Define key points to consider when specifying energy transmittance ratings.
- Understand commonly referenced standardized condensation ratings vs project specific condensation risk evaluation.
- Define key points to consider when specifying condensation resistance performance.
- Review the benefits of pairing simulations with performance mock-up test data.

Energy Transmittance

Condensation Resistance



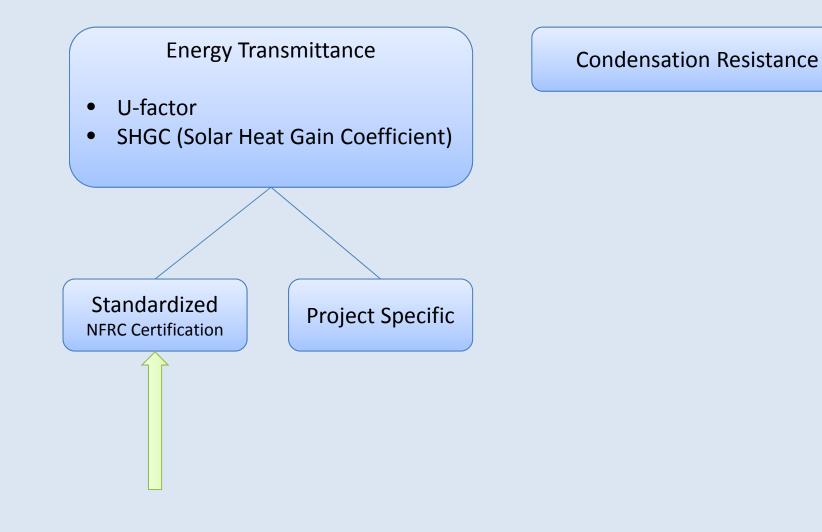
U-factor and SHGC performance can be measured by physical testing, however Ratings are produced through finite element modeling using LBNLs THERM and WINDOW software tools.

Measured Energy Transmittance

NFRC 102, Physical U-factor test

Guarded hot box chamber

Finite Element Analysis Thermal Modeling

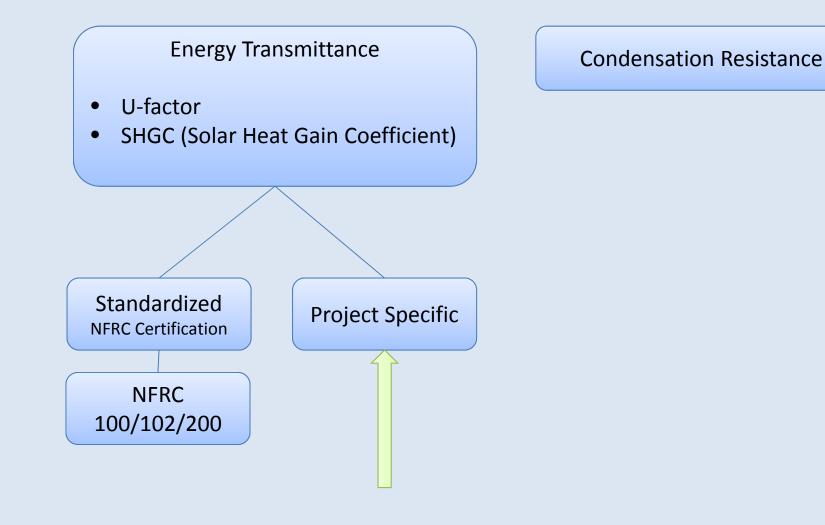

+						
	SHGC Exterior	2.0442	delta T C 39.0 39.0 39.0 39.0	Length mm 99.659 99.659 63.5	Rotation 90.0 90.0 90.0	Projected in Glass Plane Projected in Glass Plane Projected in Glass Plane Export

NFRC 100, Simulated U-factor NFRC 200, Simulated Solar Heat Gain Coefficient

2-Dimensional modeling software THERM 7.4 WINDOW 7.4

Height 59.	ent - Single 522 inches 155 inches 159 ft2 90 onditions	•	
Total Window F U-factor 0.643 SHGC 0.434	032	Btu/h-ft2-F	Click on a component to display characteristics below

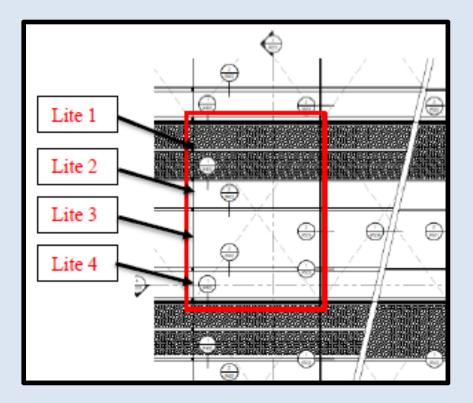
Standardized Energy Transmittance

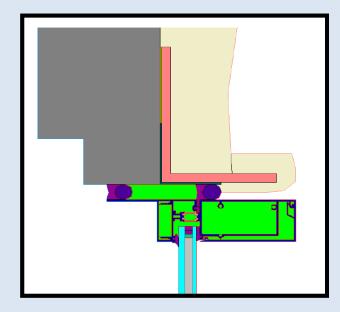

Benefits:

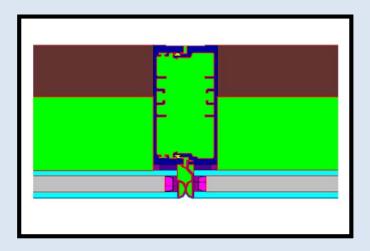
- Product to product comparison
- "Certifiable" Values
- Compliance with energy code requirements
- Compliance with energy efficiency incentive programs (LEED)
- Existing product data may be available

Drawbacks:

- Typically uses standard product profiles
- Uses standardized sizes and configurations
- Does not include opaque lites
- Does not include the influence of adjacent construction
- Full product certification may up to a few months to complete






Project Specific Energy Transmittance

NFRC 100 modeling and calculation principals expanded to larger complex areas

Elevation A w/additonal Horizontal Bars							
Lite	U-factor (Btu/Hr·Ft ^{2.} °F)	Area (Ft ²)					
1	0.113	44.32					
2	0.407	23.32					
3	0.323	46.68					
4	0.521	25.68					
Vison Total	0.397	95.68					
Spandrel Total	0.113	44.32					
Overall Total	0.307	140.00					

Project Specific Energy Transmittance

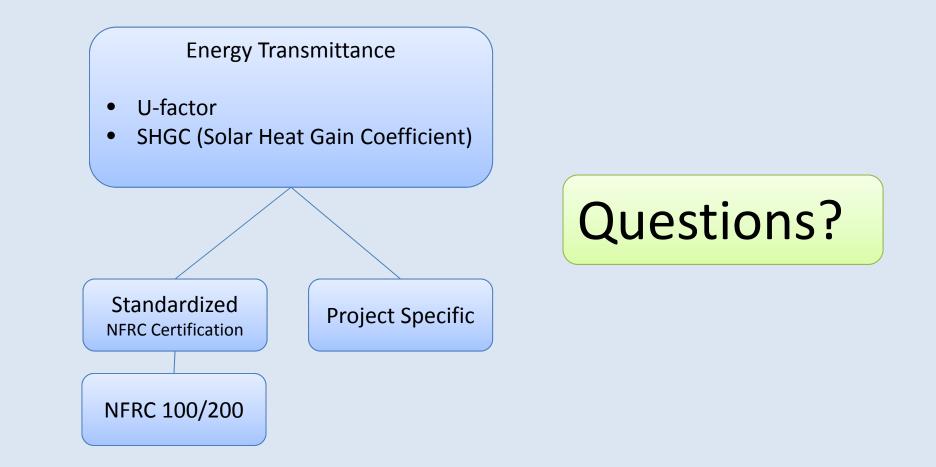
Benefits:

- Accurate estimates of project performance
- Can be performed early in the design process
- Custom profiles included in calculations
- Project size lites and configurations
- Opaque lites can be included in analysis
- Adjacent construction can be considered
- Can be useful for consideration in mechanical system sizing, etc.

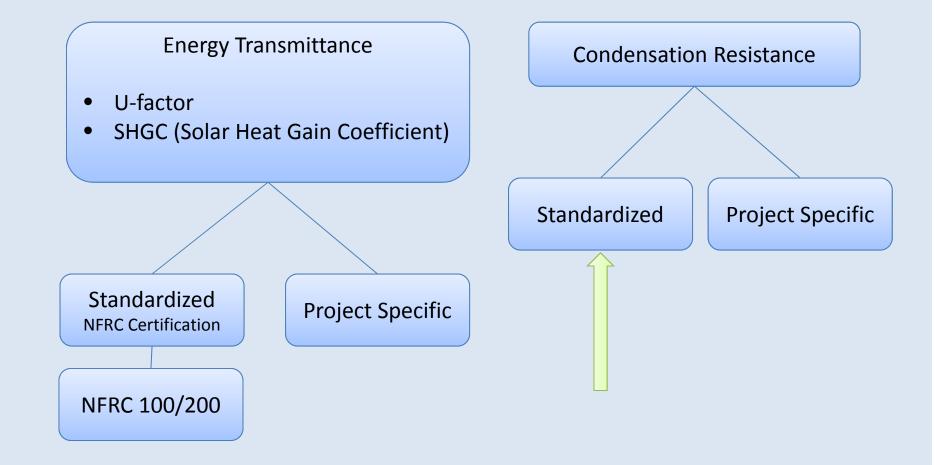
Drawbacks:

- Can be more costly than standardized product calculations
- Does not qualify as "certification" or "label"
- Can be overanalyzed
 - Selecting and calculating typical repeating project modules can provide a reasonably accurate estimation
 - Specifying extensive modeling including atypical conditions can result in substantially higher costs with relatively small changes in estimated performance.

Key points for specifying energy transmittance analysis


Standard product rating

- U-factor in accordance with NFRC 100
- SHGC in accordance with NFRC 200
- Clearly state if product certification or labeling is required:
 - NFRC 700 site built certification, NFRC 700 certified product, or NFRC 705 Label Certificate


Project specific energy transmittance

- U-factor (SHGC) in general accordance with NFRC 100 (200) performed at project size and configuration, and to include adjacent construction.
- A detailed description of extents of analysis should be included in the contract documents.
 - Project specification
 - Architectural drawings

Standardized Condensation Rating

NFRC 500 "CR" Rating

- Computer modeling
- Part of NFRC standard product rating
- Scale of 0-100
- Based off of simulated surface temperatures and compared to three different interior dewpoint temperatures

AAMA 1503 "CRF" Rating

- Physical Test
- Origins date back to 1970's
- Scale of 0-100
- Measures 14 predetermined frame locations, 6 predetermined glass locations
- Additionally 10 frame temperature measurements located at lab discretion
- Performed at one set of environmental conditions, 0°F Outside / 70°F Inside

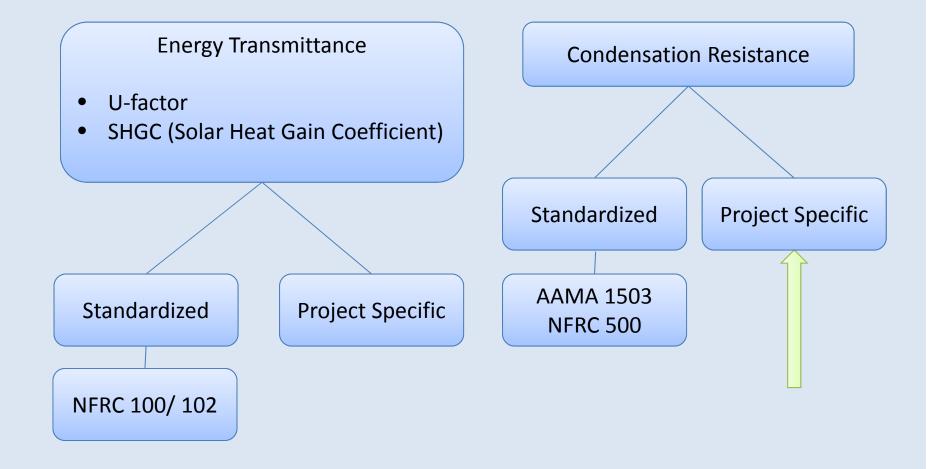
Common Mistake in Specifying Standard Condensation Rating

Example: Aluminum thermally broken fixed window with insulated glass (Argon 90% and LowE coating)

NFRC 500 CR rating= 44 AAMA 1503 CRF rating= 58

Standardized Condensation Rating

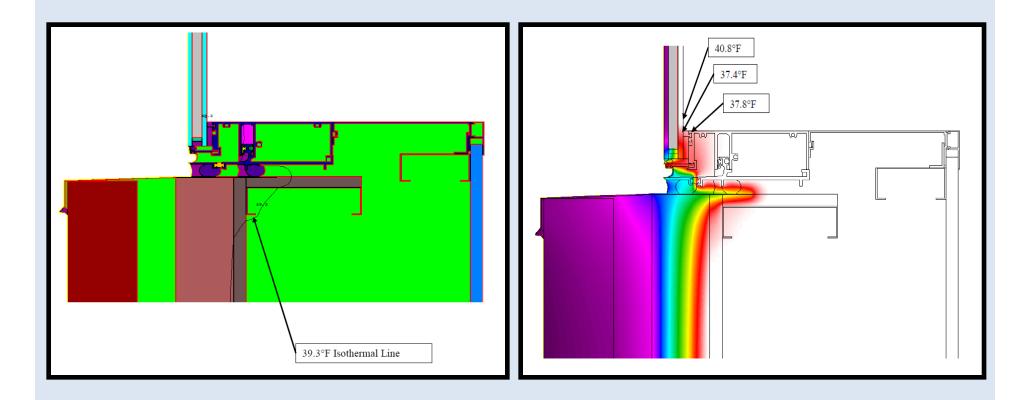
NFRC 500, "CR" rating AAMA 1503, "CRF" rating


Benefits:

- System comparisons
- Compare System A to System B with all variables equal

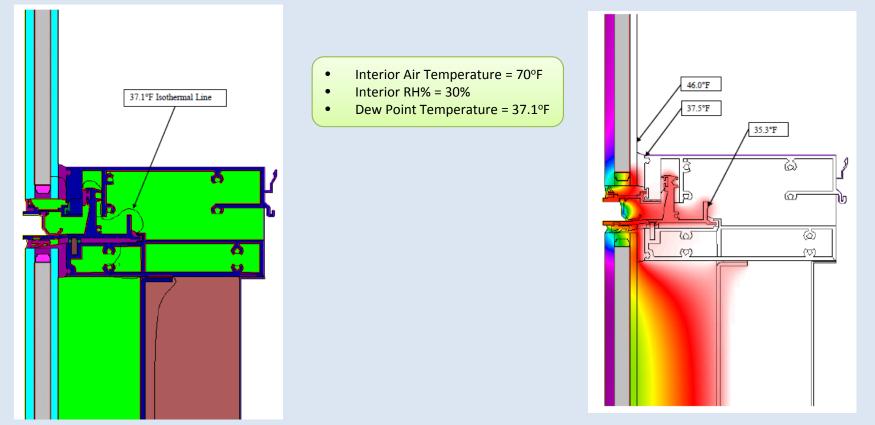
Drawbacks:

- Standard product profiles
- Standard product size and configuration
- Uses standardized environmental conditions
- Does not include the influence of adjacent construction
- Results do not illustrate specific areas of risk within the system
- "CR" and "CRF" Ratings often mistakenly interchanged



Project Specific Condensation Risk Analysis

2D Finite Element Analysis using LBNL THERM Software



Project Specific Condensation Risk Analysis

Create models tailored to project specific environmental conditions

- Exterior Air Temperature
- Exterior Wind Speed
- Interior Air Temperature

Compare interior surface temperatures to design dew point temperature to identify areas with the potential to form condensation.

Project Specific Condensation Risk Analysis

Benefits:

- Includes adjacent building construction
 - Major factor in performance
- Opaque lites included
- Project specific environmental conditions
 - ASHRAE design temperature exterior
 - Project specified interior temperature and humidity
- Visual and quantitative results
 - Shows specific areas of risk at each modeled detail
 - Great tool to head off issues early in the design process

Drawbacks:

- Should be approached carefully to avoid adding unnecessary costs by repeatedly modeling details during development
- Limitations to details influenced heavily by three dimensional energy flow
 - Anchors
 - Spandrel intersections
 - Parapets
- Results should not be reviewed with some level of interpretation
- Somewhat lacking industry standards until recent (AAMA 515)

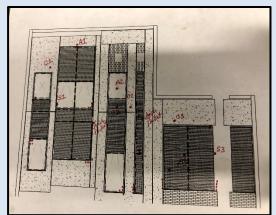
Key points for specifying condensation risk analysis

Standard product comparison

- CR rating in accordance with NFRC 500
- CRF rating in accordance with AAMA 1503

Project specific condensation risk analysis

- Condensation risk analysis using two dimensional finite element modeling software (THERM / WINDOW)
- Adjacent construction shall be included
- Statement as to whether any level of condensation formation is expectable in simulations (i.e. condensation formation shall not exceed 5% of any detail)
- A description of number of details required
 - Typical details
 - Atypical details
- Environmental conditions
 - Winter design interior temperatures
 - Winter design interior humidity
 - Exterior temperature
 - ASHRAE climatic design temperatures 99% or 99.6% typical
 - Exterior windspeed
 - 15 mph typical



Project Specific Condensation Test

AAMA 501.5 Test method for thermal cycling of exterior wallsAAMA 501.9 Surface temperature assessment for condensation resistance of exterior wall systems

Validation of Project Specific Simulations

Benefits:

- Helps to understand level of accuracy of finite element models
- Increases data and knowledge regarding 3-D conditions
 - Parapets
 - Sunshade brackets
 - Anchors
 - Vision/ spandrel transitions
- Typically included as a step in performance mock-up tests

Drawbacks:

 Performed late in the design process and may be costly to make design changes

Questions?

Quast Consulting & Testing, Inc.

1055 Indianhead Drive Mosinee, WI 54455 (715) 693-TEST (8378)

Corporate Office & Laboratory in Mosinee, WI

Brian Sasman, PE, President Lab Mock-up Testing/Proposals Ph: 715-302-1934

bsasman@qct-usa.com

Jeff Zibton

Test Engineer/Project Manager

Ph: 715-432-1509

jzibton@qct-usa.com